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Where we are vs. where we’re going

Input
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Scaling in compute has hit an accelerated stride

Sastry et al. (2024)
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Why have these technologies improved?

• Scale

• Taste

Source: (Kaplan et al., 2020)
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GPTs are GPTs (w/Tyna Eloundou, Sam Manning, and Pamela Mishkin)

5

● Developed new rubric for exposure of tasks given different capabilities of LLMs
● New rubric for augmentation vs. automation to LLMs

○ Generated labels with human contractors and using LLMs themselves
○ Methodological Contribution: Use GPT for social science research

● Validating with public data on where we see LLM use
○ Adoption vs. exposure

● Mapping exposure of new jobs and skills around LLMs to LLM automation
○ Prompt engineer, HITL, etc.

● Exposure across demographics, wages, etc.

● What hypothesis are we testing?
○ Are LLMs general-purpose technologies?

■ Pervasive
■ Improve over time
■ Spawn complementary innovations

○ NOT “are the algos going to take all of our jobs?”



NONCONFIDENTIAL // EXTERNAL

General-Purpose Technology Criteria:

● Pervasive

○ Check: Do lots of occupations have exposure?

● Improves over time

○ Check: Developer activity, model improvements, we’re going to take it for granted too

● Spawns complementary innovation

○ Check: Is occupational exposure also contingent on building with other systems?
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What did we do?
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Is LLM exposure pervasive?
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There are many important caveats to this analysis (internal to the study)
• Subjective human judgments: Labelers understand LLM capabilities, but don’t know these roles deeply.

• Measuring LLMs with GPT-4: Brittle rubrics and arbitrary thresholds. Iteration leads to slightly different results.

• Validity of the task-based framework: What is the atomic unit of work? These task lists are one instrument with 
many imperfections. Some tasks are {up, down}stream of others. Big assumption here that this dataset reflects 
some organization of work.

• Lack of human annotator expertise: Annotators unaware of occupations <> activities. (Collected more labels in 
some cases)

• Forward-looking and subject to change: This is an ongoing effort and the equilibrium is very hard to predict.

• Disagreement between humans and GPT-4: Humans and GPT-4 are differentially aware of context. This can 
change results and makes outputs of the model sensitive to prompting (among other concerns).

• Saying nothing about social, legal/regulatory, political considerations: Technical feasibility is only one part of 
the process.

• Arbitrary focus on software: Robots are starting to use LLMs…
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Is deploying LLMs going to require or generate complementary investment?
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More exposed roles typically have greater barriers to entry
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Okay so what about automation?
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Clustering exposure (just to LLMs) by job ”archetypes” shows the pattern



NONCONFIDENTIAL // EXTERNAL
Researchers and developers rank amongst the most exposed groups
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• GPTs are GPTs!

• Pervasive 

• Improving over time 

• Will probably require complementary innovation 

• Takeaway: The equilibrium for a general-purpose technology is hard to know in advance.

• But we do know where to look first. This set of scores and methods can help provide some answers.

• 80% of occupations have around 10% of their tasks exposed.

• Takeaway: Tasks and Systems are the right units of analysis. Locate potential for change!

• What we did not find: AI is coming for all of the jobs. There isn’t evidence that’s happening.

What are the key takeaways so far?
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The Productivity J-Curve (Brynjolfsson, Rock, and Syverson 2021)

How do intangibles affect productivity measurement?

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
● Intangible capital would be an unmeasured input

○ Will cause productivity to be overstated

● However, intangible capital is also an output (measured as 

investment flow)

○ Will cause productivity to be understated

● Net effect on productivity measurement depends on relative timing 

of input vs. output mismeasurement
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Intangible Growth Accounting

Standard production function: 𝑌 = 𝐴𝐹 𝐾, 𝐿

Standard Solow residual TFP: 𝑔𝐴 = 𝑔𝑌 −
𝑟𝐾

𝑌
𝑔𝐾 −

𝑤𝐿

𝑌
𝑔𝐿

Intangible (𝑈)-augmented production: 𝑌 + 𝜙𝐼𝑈 = 𝐴∗𝐹∗ 𝐾,𝑈, 𝐿

Intangible-augmented TFP growth:

𝑔𝐴∗ =
𝑌
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The J-Curve
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TFP Growth Mismeasurement by Year: IT Hardware



NONCONFIDENTIAL // EXTERNAL

TFP Accumulated Level Mismeasurement: IT Hardware
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Adjusted TFP Levels: IT Software
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TFP Growth Mismeasurement by Year: IT Software
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TFP Accumulated Level Mismeasurement: IT Software
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Does This Explain the Post-2004 Productivity Slowdown?

No; implied slowdown actually larger

A mismeasurement explanation for the slowdown doesn’t require just 

mismeasurement; it requires a change in mismeasurement (in a particular 

direction and around 2004)

Period

Measured Annual 

TFP Growth (%)

Implied Annual

TFP Growth (%)

Implied –

Measured

1995-2004 1.63 2.20 0.57

2005-2017 0.40 0.71 0.31

Slowdown 1.23 1.49 0.26
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If AI is a GPT, the full effects may take a long time to play out

● Pervasive, Improving over time, Spawning complementary innovation

● Productivity gains from technologies like this:

○ Require intangible capital (historically up to $10-12 of intangible investment per tangible 

dollar invested)

○ Gains are not immediate, but some investments are up front

○ May affect productivity measurement in general (i.e. contents of the Solow Residual are 

different)

● Early advances are promising with potentially fast-changing task structure
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